

Final Project CheckPoint 1 – StarCraft Warmup

100 Points

Instructions

The template code for this assignment is posted to GitHub classroom shown on the Canvas page.

Important: When GitHub asks you for a team name, please put use the following format
LastName1_FirstInitial1__LastName2__FirstInitial2, where LastName1, LastName2,
FirstInitial1, and FirstInitial2 are replaced with you and your partner’s actual last names and
first initials. This is so we easily see who is in what group when we grade your PEX.

Overview

We will install StarCraft II, set up a project that uses Google DeepMind’s pysc2 library, and write
python code using pysc2 to create three bots that successfully play StarCraft against simple enemy
opponents. Along the way, we’ll read some documentation and do some tutorials. We estimate this
will take you at least 4 hours. (1 hour for installation, and then 1 hour of focused work per part).

Installation (0 points)

We’ll be using StarCraft during the next few PEXs, so it’s time to install it. This requires a few
steps, so start early and be patient. We suggest doing this with your partner if possible and
completing these install instructions on both computers.

Side note: MissionNet wired and wireless should both allow access to StarCraft. If wireless doesn’t
work and you want to use it, you can follow the instructions in this footnote1 on your own, or with
your instructor.

1. Install Battle.net using the installer here: https://www.blizzard.com/en-
us/apps/battle.net/desktop You’ll need to make an account if you don’t have one. Be sure to
run the installer as Administrator. You will also need Administrator privileges for other
parts of the installation later.

1 (1) Open a Windows command prompt, type ipconfig and note the wireless IPv4 Address. If it
doesn’t start with 10.190, you will need to forget and re-connect to it. (2) Make sure you have your
MissionNet rusername and password handy. (3) Then right-click on the MissionNet connection, and
choose Forget. (4) Show all available networks, and re-connect to MissionNet using your credentials.
When re-connecting, it should give you a 10.190 IP address – run ipconfig to verify that – and
therefore, starcraft should work. If it does not work as expected, try a wired connection or we can
work with the MissionNet team to troubleshoot.

2. From the installed Battle.net app, install StarCraft II. Go to All Games.
a. Click on the StarCraft II icon:

b. Select Play for Free.

c. At the next screen, just accept the defaults.

d. Note the install size! It will take a while to install! But you should be able to do the

next few steps while it is installing.

3. Download the maps we’ll need to play the game
a. Download this map: https://blzdistsc2-a.akamaihd.net/MapPacks/Ladder2017Season4.zip
b. Unzip it – you'll get a Ladder2017Season4 folder. The password is iagreetotheeula
c. Navigate to the starcraft folder (the default is C:\Program Files (x86)\Starcraft II)
d. Create a folder called Maps in the Starcraft II folder.
e. Copy the unzipped Ladder2017Season4 folder into the Maps folder, as shown. (Ignore the

other folders there – you don’t need them.)

f. Repeat steps 3a – 3e using this link: https://blzdistsc2-
a.akamaihd.net/MapPacks/Melee.zip

g. Many more maps at Blizzard and more explanation at deepmind (both optional).

4. (Optional) At this point, you could spin up StarCraft II to get some background. TL;DR: there
are three races: Terran, Protoss, and Zerg, who are battling each other.

5. Connect to the github classroom (link above) and check out the starting code. Clone the

template and open it in Visual Studio Community 2022.

6. These next steps show how to download DeepMind’s pysc2 (PYthonStarCraft2) library using
their github page, but are customized to Visual Studio:

a. Go to Python Environments on the right and choose the Python 3.9 that came with the

Visual Studio install If you don’t see Python Environments, use View > Other windows >
Python environment. (Note: as of Nov 2022, we’ve had the most luck with python 3.9.
One cadet had success with 3.7, but not on 3.11. If you need python 3.9, go to
https://www.python.org/downloads/ and download.)

b. Select the environment. Then below the environment name, look for Packages (PyPI) –
click the dropdown to select it if it isn’t shown. Then in the search window that says
“Search PyPI and install packages”, type pysc2 and then below that, press Run
command: pip install pysc2. It will take a few minutes to install this package and its
dependencies.

c. IMPORTANT: There is an issue with the protobuf library version that pysc2 uses. If

you were to run it now, you’d get an error: python - TypeError: Descriptors cannot not
be created directly - Stack Overflow To downgrade protobuf and avoid this issue, type
--upgrade protobuf==3.20.1 --user in the same window you typed pysc2 and then
press the Run command: (reference). If this doesn’t work, complaining about

virtualenv, then try it again without the --user at the end, and if it still gives an error,
try re-starting Visual Studio.

d. The library is now installed. The default location will be something like

C:\Users\Your.Name\AppData\Local\Programs\Python\Python37\Lib\site-
packages\pysc2 This is handy in case you need to look at source code.

7. Test your install by running empty_agent.py.

Question 1 (15 points): Learn the Basics about StarCraft
and the pysc2 Library

(We expect this to take ~1 hour.) Steven Brown has created a series of tutorials (list on medium)
about pysc2. Go to his tutorial (Build a Zerg Bot with PySC2 2.0). Read it slowly and carefully to learn
about the basic game loop and how to build a basic, hardcoded agent. Take some notes – it will help
with the deliverable for Q1 (described below). Build the code in the provided file
build_zerg_agent.py. He has a link at the bottom of the tutorial to the finished code in github. It’s
up to you if you want to type or copy the code in step-by-step or just grab the whole chunk, but the
goal here is to understand what he is doing. You may find this table helpful. You’ll see each in the
code.

Concept \ Race: Zerg Protoss Terran
Initial base: Hatchery
Basic worker unit: Drone
Source of supply (food): Overload
Basic fighting unit Zergling
Building that creates the fighters: Spawning Pool

If you know nothing about StarCraft, you’ll also find liquipedia.net helpful – it’s a well-organized
encyclopedia of StarCraft knowledge. This entry on Zergs gives an overview, and then click Zerg Units
to see the buildings (in a tree) and the units that each building can build (lists underneath the tree).

Once you have completed the code, put a breakpoint next to the first line in the ZergAgent’s step
method (the line that starts with super) and debug the program. When it pauses at the breakpoint,
look at the variables in the Locals window (Debug > Windows > Locals). Expand the obs object, then
observation within it. It has many items in it. Note any of the variables that start with the letter m.
(Full disclosure: our goal isn’t so much for you to find a specific item as it is for you to launch the
debugger since it will be useful while you are writing your own code later.) Observation is a large
data structure that contains almost all of the information occurring in the game at the current
timestep. You will use this information to build an intelligent agent later in the project.

Once you are done the tutorial, write a summary of what you learned in the comments at the top of
the file. Also include your object starting with “m” from the previous step.

Commit and push your code.

Question 2 (15 points): Learn Raw Functions

Note: it’s usually helpful to change drivers (which partner is typing) between questions. So your
partner should pull the code from question 1 from the repo, and then start question 2.

The previous tutorial gave you a decent start to orienting yourself on pysc2, but the code presented
suffers from two limitations:
1. Your bot can only see what is close to it (on the Screen window), which is a small part of the

whole world (the Minimap window).
2. Each unit takes two steps to act: first select it, then do the action.

Both of these limitations are overcome using a paradigm that is designed for StarCraft bots:
RAW_FUNCTIONS. Steven Brown has written a second tutorial about this (Create a Protoss Bot Using
Raw Observations and Actions in PySC2). Read and do this tutorial. Skip step 1 about cloning pysc2
dev branch. Add the code to build_protoss_agent.py. Spoiler alert: he is building the same bots as
the previous tutorial, but using the Protoss race. While there are some differences, it is all pretty
analogous. Do you agree with this table?

Concept \ Race: Zerg Protoss Terran
Initial base: Hatchery Nexus
Basic worker unit: Drone Probe
Source of supply (food): Overload Pylon
Basic fighting unit Zergling Zealot
Building that creates the fighters: Spawning Pool Gateway

Similar to the last tutorial, please write a summary of what you learned, in the comments at the top of
this file.

Reminder: commit and push to the repo, then partner pulls.

Question 3 (70 points): Build Marines and Win Battles
Against Wimps

For the rest of the final project, we will build up a friendly base and then train an artificial neural
network to defeat an adversary. We will use a simple scenario (the Simple64 map) as we will not have
enough time in the remainder of the course to train a neural network to play an advanced adversary.
You will also set the adversary difficulty to very_easy. To get started, you will build your friendly base
with a series of scripted actions:

In build_marines_agent.py, write code using RAW_FUNCTIONS to do the following:

 Build 4 supply depots (Define this as a variable, near the top of your program that you can
easily modify).

 Build 2 barracks (Define this as a variable, near the top of your program that you can easily
modify).

 Train as many marines as your supply allows, using both barracks, and send them to attack
the enemy on the opposite quadrant of the screen.

You are only required to play as the Terran race. You will also notice that your base will always start in
the top-left or the bottom right corner of the Simple64 map (the game randomly chooses which). The
enemy location will always be in the opposite corner to your friendly base (for example, if your base
starts in the bottom-right corner of the map, the enemy base will be located in the top-left corner).

The Simple64 map is named based on its
coordinate system. There are 64 locations
in the x direction and 64 locations in the y
direction. Use this information when
determining the coordinate locations of
where to send units. NOTE: The entire 64
locations are not available. Experiment
with sending units to different locations to
determine where the boundaries are for
the accessible map. In the game shown
here, the 64x64 minimap (bottom left)
shows that the highlighted screen, where
the Terran base is, is in the bottom-right
corner of the world. Thus, the enemy will
be in the top-left corner.

As you’ll read in the specifications for
checkpoint 2, your code will be generalized
to allow movement to any of the four
quadrants. This allows for more interesting
game play while keeping the learning problem for the neural network simple. The quadrant will be
chosen randomly while exploring and chosen by the neural network once it has been trained on game
data.

Hints:
 You may assume the same situation as in the Protoss bot tutorial: that your base will be on one

corner and the enemy will appear in the other corner.
 To build multiple bases, you’ll need to vary the location in which each is built. The randomization

pattern that generates x_offset and y_offset values and used in the Protoss bot attack location
code should work nicely here. Use random.random() to generate a random number from 0.0 to
1.0 and multiple this by your offset to generate a random location each time. Just keep issuing
build actions until you have 4 depots. Ditto for the 2 barracks.

 You can alternate barracks used to train marines by keeping track with a variable, or (and perhaps
easier), whenever you issue a command to train a Marine, pick 1 of the 2 barracks at random.

 You may notice that you issue an action command and the game does not perform any action.
This is usually caused by the game’s inability to execute that action. For example, if I issue the
command to train a marine, there may not be enough minerals available to build the marine. Use
the debugger and liquipedia.net when you are trying to determine why an action does not
execute.

 You may find it helpful to go back to https://liquipedia.net/starcraft2 and search for Terran to
learn the relationship between the units. (I used that info to complete the table above – it helped
organize my thoughts.)

 If you need specific names of functions, go to
https://github.com/deepmind/pysc2/tree/master/pysc2/lib, open actions.py and search for
RAW_FUNCTIONS. It will give the whole list you need.

Grading Rubric

Expected Functionality Points Allowed Points Earned
(Question 1) Describe what
your team learned from Steven
Brown’s Build a Zergbot with
PySC2 tutorial in the comments
sections of the
build_zerg_agent.py file. This
should be roughly 1 paragraph
long at whatever level of detail
your team finds helpful.

12

(Question 1) The comments in
that file also include the
environment objects that start
with m, as requested.

3

(Question 2) Summarize what
you learned about
RAW_FUNCTIONS in the Create
a Protoss Bot tutorial. Add
comments to
build_protoss_agent.py file.

15

(Question 3) Create a function
that performs scripted actions
at the beginning of a StarCraft
II game on the Simple 64 map
(70 points broken down below).
Write code in
build_marine_agent.py file.

 All code (except
environment startup actions) is
contained within a function

5

 All actions are performed
using RAW_FUNCTIONS

5

 No hardcoded magic
numbers (such as the number
of supply depots of barracks to
build); instead saved in
constants near the top of the
function.

5

 Scripted game is contained
within an epoch loop. In other
words, after the player has won
or lost, another StarCraft II
episode will immediately start.

15

 4 Supply depots and 2
barracks are built as soon as
resources are available. You
may define static locations for
these buildings or randomize
the location each time the
game is run.

15

 Barracks begins to build
marines as soon as it is
completed

5

 Once marines are produced,
begin moving marines to the

20

Other references:
https://gamescapad.es/building-bots-in-starcraft-2-for-psychologists/ (good introduction to building
StarCraft bots for beginners)
https://github.com/deepmind/pysc2/blob/master/docs/environment.md (basic description of the
StarCraft Environment object)

opposite quadrant than the
marines started in. See hints
on how to accomplish this.
Total

100

